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Modern (global and annual averaged) Earth
energy budget
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A surprising uncertainty!

e The wavelength-integrated total solar
irradiance is believed to be known with an
uncertainty of less than 0.5% (e.g. Kopp
and Lean 2011)

e But how well do we know the spectrally-
resolved irradiance?
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The near-IR Extraterrestrial Solar
Spectrum (NIR ESS)

for solar irradiance datd
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m Next Figure 9. (top) CAVIAR ESS at one astronomical unit (1 AU) from 2000-10,000cm ™" (1-5 pm).
(bottom) The merged CAVIAR ESS from 4000-10,000cm™ (1-2.5 pm). This ESS is a merger of the
S o CAVIAR ESS derived using observations of 18 September 2008 with the ACE-FTS ESS, Kurucz-

observed ESS, and Kurucz-modeled ESS.

This dataset is available via a web service interface. For more information see the LISIRD Lalio paue. M ena ng et al 20 1 3, J G R
10.1002/jgrd.50425

LISIRD Home | Site Map | Contact Us | About LISIRD

g University of
http://lasp.colorado.edul/lisird/sorce/sorce_ssi/ Reading



SOLSPEC

Grating spectrometer, covering (about)
0.17 to 3.1 ym at about 0.5 nm
resolution (around 20 cm™1)

First flew on Spacelab I in 1983

Refurbished and flew on three “"ATLAS”
Space Shuttle missions (1992-1994).
ATLAS3 became a widely-used
reference spectrum
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Also flew on European EUREKA mission in 1994 (but called
SOSP)

Then installed on International Space Station in 2008

upd.a-t.ed electronics and optical components. Extensive lamp-calibration equipment was in-
corporated, and synchronous IR signal detection was implemented by the Belgian Institute
for Space Aeronomy (BIRA-TASB). After alignment of the optics and vacuum and mechan-
ical tests, the new SOLSPEC was calibrated at the Physikalisch-Technische Bundesanstalt

(PTB: Braunschweig, Germany) using a blackbody as reference (Thuillier ef al., 2009). '
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The Solar Irradiance Spectrum at Solar Activity

Minimum Between Solar Cycles 23 and 24

G. Thuillier - D. Bolsée - . Schmidtke - T. Foujols - B. Nikutowski -

A.L Shapiro -

R. Brunner - M. Weber - C. Erhardt - M. Hersé - D. Gillotay - W. Peetermans -

W. Decuyper - N. Pereira - M. Haberreiter - H. Mandel - W. Schmutz

Ratio to ATLAS 3

0.5+

[Ratio SOLAR 2 to ATLAS 3

0.8+ |

| [Ratio SRPM to ATLAS 3] TRate WiTto ATLAS 3
[

[Ratio SOLAR 1 to ATLAS 3|  [Ratic SCIAMACHY to ATLAS 3|

FIED
I | | |

500 1000 1500 2000

Wavenlength (nm)

?300

Thuillier et al. (2014)
had shown that

“new” (2008) NIR ESS

measurements were 7%
lower than ATLAS-3 at
> 1.5 um, and that the
lower values were
consistent with e.g.
Sciamachy

Figure 10 Ratio to ATLAS 3 of the SOLAR | and 2 composites, COSI, SRPM, SCIAMACHY. and WHI
from 150 to 2400 nm. The main differences are in the IR. We recall that the SOLAR 1 and WHI spectra

(using SORCE/SIM) were adjusted to match ATLAS 3 in the IR.
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Figure 13 Comparison between different versions of the SOLSPEC instrument (ATLAS3 and SO-

LAR/SOLSPEC), SCIAMACHY and gmund-bas.ed measurements performed at Izaiia (IRSPERAD). SCIA-
MACHY, and ATLAS3 are convoluted to 10 nm.

"1 Bolsée et al. (2014)

showed ground-based

1 measurements. Theirs and

ours (Menang et al. 2013)

1 were also broadly

] consistent with the lower

1 values derived by SOLAR2.
] But then ...
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The Infrared Solar Spectrum Measured
by the SOLSPEC Spectrometer Onboard
the International Space Station
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SOLAR2 was based on ISS
“first light” from
measurements in April
2008 “to avoid ageing
effects”
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Thullier et al. (2015) “Increase
of solar signal (with time) ...
(has) no clear explanation ...
most likely due to some
temperature effect and/or
outgassing of the instrument”

They concluded that the ESS
was closer to original ATLAS3
(Solarl) spectrum and
evidence supporting the lower
SOLAR? ESS was flawed!
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Not every one agrees with
Thuillier et al’s conclusion ...

Solar Phys
DOI 10.1007/s11207-015-0707-y CrossMark

Comment on the Article by Thuillier ef al. *“The Infrared

Solar Spectrum Measured by the SOLSPEC
Spectrometer onboard the International Space Station”

Invited Review

Solar Phys (2016) 291:2473-2477
DOI 10.1007/511207-016-0914-1 CrossMark

M. Weber!

Comments to the Article by Thuillier ef al. ““The Infrared
Solar Spectrum Measured by the SOLSPEC
Spectrometer Onboard the International Space Station™
on the Interpretation of Ground-based Measurements

at the Izana Site

D. Bolsée! - N. Pereira' - E. Cuevas® - R. Garcia® -

A. Redondas?
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Implications

e If #30% of the incoming solar radiation is
at A>1 uym, and this is 5-10% uncertain ...
and the total solar irradiance is accurate to
within 0.5% then ...

e \We must be significantly uncertain about
the incoming solar radiation in other
spectral regions. We can't just “lose”
several % of the total solar irradiance
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Ground-based sun-pointing FTS
measurements

NPL FTS and sun-tracker
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Calibration traceable
to a primary standard
cryogenic radiometer
Field campaign in UK
in 2008

Current work by Jon
Elsey (Univ of
Reading) builds on
previous work by
Menang et al. (2013)
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Field campaign results

e Direct modelling of surface  Jon Elsey, Univ of Reading
spectral irradiance
inconsistent with observed
irradiances using the higher
SOLSPEC ESS

e Discrepancy is outside
known instrumental,

National Physical Laborator

1
)

(Wm-?@cm)

Spectral Irradiance
o o

| |
.0 L1l ML — L J (1ERLIPAL
500 5000 5500 60 6500 7000
H avelength (um
S eCtrOSCO IC Or 2550 2.00 167 143 1.25 111 1.00
0.08
— CAVIARESS
H — Solar2 ESS L _dih e
‘ aat LA Y

atmospneric state —007|| — solartEss

uncertainties

e Updated Langley analysis
shows good agreement
with the SOLAR2 ESS, and ..
so supports the /lower value

o
=)
3]

Spectral Irradiance (W m~2(cm 1) 1)
o o o

o

s

o
@

0000000000

University
g Readmg

7000
Wavenumber (cm )



Modern (global and annual averaged) Earth energy
budget

Incoming TOA imbalance 0.6x0.4

Outgoing
solar 340.2+0.1 Reflected solar 100.0+2 Clear-sky 239.73.3 longwave
emission radiation
Shortwave A||-sky 266.4+£3.3
cloud effect r atmospheric
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Between the water bands ... the water
vapour continuum

——————

1008 2008 3000 4000
WNy cm-1

e Leading importance in the 10 micron mid-infrared window,
but also important between the other water vapour bands

e No settled scientific cause — not today’s subject

e But prior to 2000, there were almost no measurements of
the continuum in the near-infrared windows. Today there
are a few, but those that do exist do not agree. Most
models use CKD/MT-CKD continuum, but there are few

observational constraints in near-IR @ URnelvaerSIIt'y‘ogf



Journal of Molecular Spectroscopy 327 (2016) 193-208

The water vapour continuum in near-infrared windows - Current
understanding and prospects for its inclusion in spectroscopic databases
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CAVIAR project (2006-2011) — indicates that widely-used

continuum models are too weak. But most lab observations
are necessarily at high temperature

Shine et al. ]
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Few measurements near room temperature — main ones
are from 3 groups: CAVIAR, Tomsk and Grenoble — and
the degree of agreement can be very poor ... especially in

the core of the 1.6 ym window
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Shine et al. J Mol Spec 2016

CAVIAR/Tomsk — uses
Fourier Transform
Spectrometry with large
gas cells — large
uncertainties at room
temperature, but better
at elevated temperatures

CRDS - Cavity Ringdown
Spectroscopy with small
gas cells. Inherently more
precise. Limited

wavenumbers E amversnty of
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Temperature dependence is a useful
diagnostic of consistency of
measurements. In 2.1 ym window,
high-T CAVIAR FTS data appears
consistent with the Grenoble CRDS

measurements
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S

C_(cm’molecule’atm™)

In the 1.6 um window, high-T CAVIAR
data appears much less consistent
with CRDS, especially in the centre of
the window. Why are 1.6 and 2.1 um
windows so different?
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Global impact of new continuum for clear skies
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Using the CAVIAR
continuum increases the
global-mean clear-sky
atmospheric shortwave

' absorption by 2% compared

to MT-CKD

But could be more or could

| be less, if different lab
I measurements used

In a warming world, this
absorption increases by

12% more using CAVIAR
continuum than MT-CKD
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Satellite retrievals of cloud
Impact on remote droplet radius (and much else)

sensing Of_CIOUd use 4900 cm-! window (amongst
properties others)

If CAVIAR continuum is used, it
could systematically reduce the
retrieved droplet radius by
typically about 1 um (in 10

. um). Depends on cloud height
wo e e er g location
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The water vapour continuum:
some conclusions

* Significant differences in the observed continuum.
Too few measurements and too little overlap in
measurement conditions. Could be important for ERB
and remote sensing

* Where next”? New technology (e.g. super-continuum
light sources), different cell geometries, “tight”
Intercomparisons, more measurements from different
labs, and need to constrain using atmospheric
observations (Jon Elsey’s PhD)
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Thank you!
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